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Abstract

This report details aspects of linear cryptanalysis against light-
weight block ciphers, ciphers designed for small implementation in
hardware, in particular the MIBS Feistel cipher and PRESENT SPN.
We start by exhibiting the central concepts and motivations for linear
cryptanalysis, then discuss methods for estimating the correlation dis-
tribution between parities over block ciphers in practice. After describ-
ing the ciphers under consideration, we explore 3 distinct methods for
‘hull estimation’ of PRESENT, two of which construct individual trails
followed by a key-enumeration phase and a new method which applies
an inductive/iterative estimation for a fixed key. We observe that for
PRESENT the new method significantly outperforms the prior meth-
ods. We estimate the linear hull of PRESENT consisting of all trails
with selection masks having Hamming weight < 4 over 100 000 keys
using the iterative method and also apply a variant hereof to MIBS.
We observe that the distributions over 22 rounds of PRESENT and
12 rounds of MIBS deviates significantly from those expected over an
ideal cipher. Furthermore we note that the employed strategy can
be used as a heuristic for finding good candidate approximations over
PRESENT.



1 Introduction

The field of cryptography is notoriously hard to define, but perhaps the
shortest description of cryptography is that it replaces trust with mathemat-
ics (algebra), whether it be trust in a central authority or the confidentially
of information transmitted over a channel, we seek to make as few assump-
tions about the participating elements as possible!. Despite the elusiveness
of a clear definition, cryptography has been among the central enabling fac-
tors of practically every modern digital technology, from e-cash, securing web
traffic and e-mail, encrypting hard-drives, to enabling citizens to prove their
identity and the construction of smart contracts without trusted entities.

All these features of modern life are provided by ‘cryptographic construc-
tions’, which are formal descriptions of how to accomplish the task at hand,
usually implemented in code. A cryptographic construction provides a high-
level ‘service’, e.g. the ability to send electronic cash between accounts. En-
abling these high-level constructions is a number of different ‘cryptographic
primitives’, cryptographic building blocks, which provide a much narrower
(and yet more general) service, e.g. a method for turning any bit-string into
a fixed sized bit-string (hash function)?. The relation between constructions
and primitives is somewhat like the difference between the functioning of a
car vs the function of the crankshaft herein.

A central (and perhaps the oldest and most widely known) class of crypto-
graphic primitives is that of symmetric encryption. In this ‘setting’ the prim-
itive provides a means to encipher and decipher messages send between two
participants holding a shared secret. Whether it is English text exchanged be-
tween an aspiring usurper and her accomplices in the 15th hundred or JSON
structures send between two servers in a world-wide cluster in the 21st cen-
tury, when the encryption/decryption process involves the same secret key,
symmetric encryption is employed. Symmetric encryption (and authentica-
tion) are omnipresent in our digital lives, embedded into constructions allow-
ing for everything from encrypted VPNs, secure web connections (HTTPS)
and encrypting data at rest (e.g. LUKS). The most common method for
applying symmetric encryption is the use of so-called ‘block ciphers’, often
used to provide both secrecy and authenticity of the data (ensuring the data

!Preferably replacing it with an assumption of ‘computational hardness’
2Usually while making assumptions about the hardness finding another bit-string map-
ping to the same output; ‘collision resistance’



has remained unchanged since encipherment). As the name implies, a ‘block
cipher’” operates on fixed sized block of bits, usually transforming a plaintext
of n bits into a ciphertext of n bits by a applying a key (usually also encoded
as a bit-string). In this report we study such block cipher constructions and
an widely applied attack against these.

When constructing cryptographic ciphers we naturally wish to evaluate
their ‘security’, however formally proving the ‘security’ of practical cryp-
tographic ciphers is beyond our present ability. Instead we consider their
resistance to known attacks, where the designers themselves often provide
analysis of the resistance against the most common attacks and the commu-
nity at large subsequently attempts to improve the art. Linear cryptanaly-
sis is one such commonly applied cryptanalytic technique, first conceived by
Matsui and applied to FEAL [15] and DES [14] in 1993. Linear cryptanalysis
exploits the correlations between linear functions over the inputs and outputs
of a block cipher: the correlation is between random variables described as
a linear combination of input/output bits, from which the technique derives
its name. The primary interest in linear cryptanalysis is then to find these
linear functions and to study the distribution of their correlation as it varies
over the keys. However calculating the exact distribution or even just the
exact correlation for a single key is computationally infeasible, therefore we
must find methods for estimating the correlations instead.

In this report we explore the general concepts from linear cryptanalysis,
methods for constructing the linear functions described above, discuss meth-
ods for practically estimating the correlation and estimate the correlation
distribution between a number of such functions for two real-world ciphers.

2 Fundamentals

We start by defining the most crucial concepts to form the basis for further
discussion, before continuing with a general discussion on how practical block
cipher are constructed and how this relates to linear cryptanalysis.

2.1 Mathematical preliminaries

We let Fy be the field of two elements and % the n-dimensional vector space
over Fy. Let (-, -) denote the dot product in a vector space over Fy. A binary



Boolean function is a function f : F§ — [F5, a Boolean function is a function
F :Fy — F5'. We often refer to the elements of Fy as bit strings, since this is
a natural representation, addition as ‘xor’ (exclusive or) and multiplication
as ‘and’. Throughout the report ‘||” denotes concatenation of such bit strings
and ‘|a]’, the size / dimension of the bit string «, while ‘|S|” for a set S is
the cardinality of the set. The Hamming weight is the number of non-zero
symbols/bundles in a string:

Definition 1. Hamming weight. Let o € F3, the Hamming weight wy(a) of
a where bln, is the number of non-zero b bundles in o, When the bundle size
b is left unspecified, b =1 is implicit.

A common way to construct Boolean functions over a larger domain is to
apply a number of smaller functions in parallel:

Definition 2. Bricklayer function [7, 2.3.3]. A bricklayer function F : Fy —
F% is a Boolean function, which can be represented as:

Flarllag]] - . [lac) = ¢1(ar)l[d1(ar)l] - - [|¢c(ac)

With Boolean ‘component functions’ ¢y : Fy* — F3' ... ¢, : FJ — FY, such
that n =m-c. Often 1 = o = ... = ¢,

We shall often be more concrete and refer to the component functions
as S-boxes, this terminology suggests that the functions are implemented as
lookup tables: often the rational for describing the function using a number
of components is to obtain a succinct description of a non-linear function,
by employing a number of smaller ‘random’ permutations®. As hinted in the
introduction, one of the most central concepts explored in this report will be
the correlation between binary Boolean functions.

Definition 3. Correlation. Let f : F — Fy and g : Fy — Fo be binary
Boolean functions. The correlation C(f,g) is a scaled version of the bias:

C(f,9) =2- Prob(f(z) = g(x)) — 1

Where the probability is taken over all x € F7.

3In reality these are chosen based on their resistance to different attacks. Including
linear crypt analysis



The correlation between random Boolean variables describes their statis-
tical relationship. A positive correlation implies that the Boolean variables
take the same value with a probability > 50% and negative correlation with a
probability < 50%, in particular the correlation between Boolean constants
is always +1. The correlation between two independent Boolean random
variables is 0.

2.2 Block ciphers

We now provide a general discussion of block ciphers. A block cipher is a
function in two variables E : K x F} — FZ, which forms a Boolean permu-
tation on F% for any key K € K. We refer to k = [log,(|K|)] as the key
size, n as the block size and K as the key space. Most often K = F% for
some key size k. In practice only a small amount of such permutations are
computationally feasible and have succinct descriptions.

2.2.1 Ideal cipher

The ideal cipher for a block size n, is a cipher for which every permutation
on FZ can be produced by instantiating the cipher with some key; the ideal
cipher is a bijection onto the set of permutations from the key space.

Definition 4. Ideal cipher. The ideal cipher for the block size n is a bijection
from the key space KC to the set of Boolean permutations over I :

E:K—(P:Fy; — )

i.e. Instantiating the ideal cipher with a uniformly chosen key, yields a uni-
formly chosen permutation.

This definition deviates from the one commonly used in provable security
(i.e. The ‘Ideal cipher model’), by not introducing a limit on the key space:
in particular there is only a single ideal cipher for a given block size (up to
reordering/renaming of the key space). The number of permutations from
F3 — F7 is |Fy|! = 2™! which is clearly too large for any reasonable key size.
Therefore ideal ciphers are completely infeasible to construct in reality for
any meaningful block size.



2.2.2 Practical ciphers

Following the impossibility of constructing/using ideal ciphers, we now con-
sider subsets of block ciphers which have succinct descriptions and a practical
key space. In reality all modern block ciphers are constructed by repeating
the same simple key-dependent permutation a number of times with different
keys (in an attempt to strengthen resistance against attacks), this naturally
leads to the definition of an iterated cipher:

Definition 5. Iterated block ciphers [7, 2.4.1]. An iterated block cipher E :
F5 x T3 — T3 with v rounds, is a block cipher which can be represented as
the repeated application of a invertible (round) function F : Fd x Fy — FY
with (possibly) distinct round-keys ki, ..., k;:

E(K, I) - F(KTWF(KT*l; . F(K17[>>>

Where Ki,..., K, is derived from K by applying a function KS : F§ —
F2 x ... x T4 which we refer to as the key schedule. We refer to K as the
cipher key and Kyl|| .. .|| K, as the expanded key.

In practice many (but not all) ciphers alternate between adding a key
(addition in the field) and applying a non-linear unkeyed operation, the com-
position of which forms a round in an iterated cipher:

Definition 6. Key-Alternating cipher. A key-alternating cipher is an iter-
ated block cipher, for which the round function R : Fy x Fy — F% can be
written as:

R(K,I)=G(I + K)

In other words, as the addition of a round key K and the application of an
unkeyed permutation G. In particular, the size of the round-keys match the
block size for any Key-Alternating cipher.

Certain ciphers construct the unkeyed operation as a composition of a
number of smaller permutations ‘S-boxes’ (substitution boxes) and a lin-
ear permutation (to provide diffusion or ‘mixing’ of the entire n-bit state).

Such ciphers are called Substitution-permutation networks. Examples in-
clude AES and PRESENT (discussed later).

Definition 7. Substitution-permutation network (SPN). An SPN is a Key-
alternating cipher, where the unkeyed function G : F§ — F3. Can be de-
scribed as the application of a substitution layer and a linear function [7,

6



7.4.2]. The substitution layer is a Bricklayer function (Definition 2) with
component functions commonly referred to as ‘S-bozes’ (substitution bozes).

Another common way to construct practical block ciphers are Feistel net-
works, among which are DES, Camellia and MIBS (discussed later).

Definition 8. Feistel network. A (balanced) Feistel network is an iterated
block cipher (Definition 5), where the round function G : F§ x F2" — F2" can

be described as:
G(K, L||R) = R||(F(K,R) + L)

With |L| = |R|. Note that the function F : F5 x F3 — F%, need not be a
permutation for G : Fs x F2" — F2" to be invertible. We often refer to F
above simply as the ‘F function’ of the cipher.

Some Feistel networks can be expressed as key-alternating ciphers, Camel-
lia [11] and MIBS [10] are two such examples. In summary, we obtain the
following inclusions:

Feistel networks C Iterated ciphers

SPNs C Key-Alternating ciphers C Iterated ciphers C Block ciphers

Since the set of permutation which can be obtained using the practical
constructions above is minuscule compared to the set of all permutations, it
seems reasonable to ask whether the constructions above are ‘good enough’
to obtain practical security.

2.3 Motivation
2.3.1 Distinguisher

Given a cipher, henceforth referred to as the target cipher, we may wish to
evaluate its resistance to different attacks. Ideally there should be no way to
even ‘distinguish’ the cipher from the ideal cipher, for which no non-trivial
attacks apply. Note that the existence of a non-trivial attack yields a way to
distinguish the ideal and target cipher. This naturally leads to a (simplified)
definition of a distinguisher:



Definition 9. Distinguisher. Let Fy : Ko x Fy — F3 and Fy : Ky x Fy — Fy
be two block ciphers. Given a uniformly chosen i € {0,1}, K € K; and
a uniformly chosen set of inputs Z. Let W = {(I,F;(K,I)) : I € I},
A distinguisher is a computable function D : W — {0,1}, if D(W) = i
the distinguisher ‘wins’ the game. An effective distinguisher clearly has
|Prob(D(W) = i) — /2| > 0, this quantity we call the ‘power’ of the distin-
quisher.

This definition of distinguishers reflect the known plaintext setting of
our particular attack. In practice we only consider distinguishers with a
‘low’ computational complexity (e.g. enumerating the entire key-space is
prohibited), since the alternative leads to trivial attacks. In general distin-
guishability between an ideal cipher and the target cipher is itself considered
an attack, however we shall see (in the next section) that it often leads to
key recovery which indicate that the notion of indistinguishability is not ‘too
strong’; excluding schemes which would otherwise be ‘secure’.

In the following sections we explore distributions of random variables over
W that distinguishers can use to distinguish two ciphers (not necessarily the
ideal vs target cipher). Construction of more complicated/powerful distin-
guishers is considered out of scope for the project, but we will give intuitions
for constructing simple ones.

2.3.2 Key recovery

Suppose we can construct a sufficiently powerful distinguisher D between
input /outputs of n + 1 rounds of an iterative cipher and n — 1 rounds of
the same cipher. Then we can recover key material from the full n round
cipher: given the set of input/outputs from the cipher, we attempt partial
decryption of the last round with all possible round keys*, for each key we
query D with the partially decrypted pairs, if we chose the correct round
key material we have successfully decrypted the last round and expect the
distinguisher to recognize this with high probability. If we chose the wrong
key material, we decrypted a wrong key and in effect encrypted the output

4Usually we can reduce our computational complexity by only guessing the key ma-
terial needed to query the distinguisher; for linear cryptanalysis the bits selected by the
input/output selection patterns. Rather than the entire round key, which is usually com-
putationally infeasible.



by decrypting under a random key, hence we expect the distinguisher to
recognize this cipher-/plaintext set as belonging to the n + 1 round cipher.

Usually we push our attack as far as possible (distinguishing as many
rounds as possible) and expect the n + 1 round cipher to act comparably to
an ideal cipher® to our distinguisher, hence the scenario is similar to the one
discussed in the previous section, with n — 1 rounds being the target and
n + 1 the ‘ideal’ cipher.

Variations of this methods exists, partial encryption of the plaintext and
a combination of partial decryption/encryption of the ciphertext/plaintext
is also commonly used in practice.

Generally the definition of a successful attack is any attack with a lower
computational complexity than brute force and a data complexity less than
full codebook®, with a significant success probability over the key space.

2.4 Introduction to linear approximations

We now explore one method for constructing distinguishers in practice. First
we define the central concept of linear approximations, then note useful re-
lations applicable in the later analysis.

Definition 10. Linear approzimation. Let F' : F} — F3' be a Boolean
function”. A linear approximation of F is a pair of selection patterns (c, 3),
a € Fy and B € FY, defining binary Boolean functions [ : x +— {(a,x),
g:xw— (B, F(x)). We refer to f as the input parity and g as the output
parity.

When expressing the correlation C(f, g) between f and g we shall often
write Cp(c, 5) or omit F' completely if it is clear from context. In this report
we use will often simply use the word ‘approximation’ instead of the full
‘linear approximation’.

50f course the practical limitations still apply. Later we shall describe in more detail
what ‘acting comparably’ implies in the case of linear cryptanalysis.

6 All plaintext /ciphertext pairs over the cipher for the given key.

TOften F will be a bijection (e.g instantiation of a block cipher under a fixed key or a
bijective S-box) in which case n = m necessarily.



2.4.1 Linear distinguishers

In linear cryptanalysis, we use the correlation of linear approximations (Def-
inition 10) to construct distinguishers. However the correlation of a linear
approximation does not remain constant over all keys®, since each key selects
a (possibly) different permutation. We will be distinguishing between plain-
text /ciphertext pairs from an ideal cipher and the target cipher under an
unknown key, if the correlation distribution for the approximation over the
ideal and the cipher differ significantly we can build a distinguisher which
uses the likelihood of sampling the observed correlation from either distribu-
tion.

For an ideal cipher we expect the correlation to follow a normal distri-
bution with mean g = 0 and variance o* = 27" [8, Theorem 4.7|, if the
distribution of the correlation for the approximation over the target cipher
deviates from this by a significant margin we can construct an effective dis-
tinguisher, between the two.

2.4.2 Key enumeration

We are therefore interested in finding the distribution of the correlation be-
tween parities over the key space, both to determine how our distinguisher
should function for the particular cipher and to estimate the power of our
distinguisher. Practical methods for doing so is the primary topic for the
remainder of this report.

The exact distribution can be found by instantiating the cipher with every
possible key and enumerating every possible input, however this is clearly
infeasible. Rather than calculating the exact distribution we can obtain
an estimate by picking a large amount of random keys and calculating the
correlation. However calculating the exact correlation using Definition 3 is
still infeasible for all but the smallest block sizes (anything greater that =
32-bit). Hence we need to use the structure of the target cipher to lower the
computational cost of obtaining such an estimate, this will naturally lead us
to the definition of trails and hulls, but first we exhibit classes of functions
for which calculating the correlation of an approximation is feasible.

8Contrary to the common ‘standard key-equivalence assumption [5].

10



2.5 Properties of linear approximations

We now explore properties of the correlation for approximations over different
classes of Boolean functions, commonly found in modern block ciphers.

2.5.1 Linear permutations

First we observe that approximations over bijective linear Boolean functions
are trivial and the output parity is unique determined by the input parity:

Lemma 11. If F : F} — FJ* is a bijective linear Boolean function, described
as F(z) = Mz (where M is an invertible matriz). Let 5 € F5" be an output

selection pattern, then there exists a unique input selection pattern o € Iy,
such that Cp(a, B) # 0, given by a = F(p).

Proof. Since:
(8, F(x)) = A7F(x) = fTMz = (MTB)Tz = aTe = {a, )
O
In which case it follows from the proof that the correlation Cr(a, 3) is 1.

Often we shall use the observation by simply noting the linear bijections
of the cipher under consideration (e.g. The bit permutation of PRESENT
in Section 4.1 and P function of MIBS in Section 4.2), then omit further
discussion.

2.5.2 Addition of constants

The correlations of functions described as the addition of constants (xor of bit
strings), is equally trivial, but highly relevant when considering key addition.

Lemma 12. Let F': Fy — 5 be described as:
F(z)—»x+c
Then Cp(a,B) = (=)' iff. B=a [7, 17.4.1].

Again this observation will be used without explicitly stating so, for ex-
ample when ‘keying the S-boxes’ of MIBS and PRESENT; which amounts
to nothing more than flipping the sign of the correlations for the approxima-
tions, based on the parity between the key and the input/output pattern.

11



2.5.3 Composition of functions

When approximating the composition of functions, we can describe the cor-
relation by considering the correlation with all parities over the domain of
the outer function, this will later lead to the definition of the ‘linear hull’.

Lemma 13. Let F : F§ — F3 and G : F* — F5 be Boolean functions, let
a € F3, 3 € F§ be selection patterns. Then:

CGOF(Q75) = Z CF(Oé,’}/) ’ CG(’%ﬁ)

yeFy

We take note of the special case where one of the functions is key addi-
tion, in which case the sign of the correlation for the approximation over the
function is filliped according to the parity between the key and the input par-
ity. Another observation is that we can estimate the correlation Cgor(a, ),
by only considering the most significant term in the sum above. This will
eventually lead to the concept of trails.

2.5.4 Bricklayer functions

Since the S-boxes are often stored as lookup tables, their domain is necessar-
ily small (for practical reasons), small enough for us to enumerate all linear
approximations over these functions and calculate their exact correlation, us-
ing the naive method implicit in Definition 3. We can the use the correlations
of approximations over the component functions to construct approximations
over the bricklayer function F' for which the exact correlation is known. Since
the bundles are disjoint, the parities over the components are independent
and the correlation for the approximation over F' is simply the product of
the correlations for the approximations over the components:

Lemma 14. Correlation over Bricklayer function (Definition 2). Given a
bricklayer function F' : Fy — FL with component functions: ¢1 : Fy' —
F o : FY — F o ot B — F3. Let:

a = aql|as]] ... ||

B =BullBel] - 118

12



With |oa;| = |Bi] = m : Ye > i > 1, be input and output selection patterns
over F respectively. Then [7, 7.4.3]:

Cr(a, B) = [ [ Coileui, 3)
i=1

The correlation whenever ¢; = §; = 0 is always 1 over any function.
Hence approximation over bricklayer functions with few non-zero approxi-
mations over components tend to have a greater correlation magnitude. We
shall later consider this observation in relation to cipher design, in particular
the wide trail strategy and the rational for applying linear transformations to
strengthen resistance against linear cryptanalysis; even though the approxi-
mations of these are trivial.

2.6 Correlation matrices

In later analysis, the notion of correlation matrices will provide a useful tool
for understanding the rational for the ‘iterative estimation’. Furthermore
this concept is central to the work in [2], which has inspired this method.

Definition 15. Correlation matriz [7, 7.3]. Let F' : F} — F3* be a Boolean
function. A correlation matriz CF for F is a 2" x 2™ matriz where the entry
CF in row f and column « is defined as follows:

e’

CBF:a = CF(aa 6)

Note that constructing the full correlation matrix is infeasible for most
Boolean functions e.g.  the round function of an iterated cipher with a
meaningful block size. Given correlation matrices for two functions, we can
compute the correlation matrix for the composition simply as the matrix
product:

Lemma 16. Given two functions F : F} — F5 and G : F¥ — FT* the

correlation matriz C¥7°F" is the matrix product of the correlation matrices

(Definiton 15) for the functions in the composition:

OF(Q)OF(U _ CF(2) » CF(l)
This follows from Lemma 13 and the definition of matriz multiplication.

13



This is a useful property when analysing iterative ciphers; even though
we can not construct the full correlation matrix.

3 Linear trails

Let (a, B) be selections patterns over a block cipher. Calculating the exact
correlation of (o, 3) is computationally infeasible for all but the smallest block
size. Furthermore, we are interested in the distribution of the correlation
over the key-space, since the cipher is instantiated using a uniform key in the
attack setting.

Most modern block ciphers are iterated ciphers (Definition 5) as described
earlier. Because of this we can estimate the correlation by consider linear
trails, which are list of selection patterns over these (almost) identical rounds:

Definition 17. Linear trail. Let ' = R,o...0Ry0 R, be an iterative Boolean
function, a linear trail is a tuple of selection patterns U = (Uy,...,U.11),

defining linear approrimations of Ry, ..., R, with selection patterns «;, 3; =
Ui,Uiy1 for R; for 1 < <r

We call the set of all trails in which the first selection pattern is a and
the last 3, the ‘linear hull’ between o and [ in F.

Definition 18. Correlation contribution of linear trail [7, 7.59]. The corre-
lation contribution Cp(U) of a trail U is defined as:

Cr(U) = ﬁ Cr: (Ui, Uit1)

=1

As the following lemma states, the correlation over the iterative function
F between « and S can be described by the trails in the hull which start in
« and terminate in 5.

Lemma 19. Let FF'= R, o...0 Ry o Ry be an iterative Boolean function, let
a, 3 be selection patterns over F, then the correlation Cr(«, ) becomes:

Crla,B)= Y Cp(U)

UUi=a,Ur=p

This follows directly by induction from Lemma 13 and Definition 17

14



Note that the sign of the correlations for trails will vary, leading to the
notion of ‘constructive inference’ where the correlation contribution of two
trails have the same sign and similarly ‘destructive inference’ where the signs
differ. We can estimate the linear hull / correlation by considering only
the terms with a large absolute value (the ‘dominant’ terms in the summa-
tion). Informally we call the trails which have such large absolute correlations
‘dominant trails’ in the hull of the cipher (when the parities are clear from
context). Analogously we can estimate the entries in the correlation matrices
discussed earlier, by only inserting/calculating the entries corresponding to
approximations with a large magnitude, operating on ‘sparse matrices’.

3.1 Sign of correlations

For key-alternating ciphers the sign of the correlation contribution of a linear
trail, depends on the parity between the trail and the expanded key.

Lemma 20. Let F = Ro (+k.)o...0o Ro (+ky) be a key-alternating cipher
with round function R and expanded key ki, ..., k.. Then the correlation
contribution (depending on the cipher-key) can be calculated as:

Cr(U) = [[ (=D Cr(U;, Uia)
Sometimes a final key addition will occur, in which case the correlation s
over the identity and the sign becomes 1 depending on the parity of the
output mask with the final round-key.

Hence we can collect the set of trails first and estimate the correlation
over the key space by computing the parity between each trail and each key
enumerated, rather than repeat the search multiple times.

3.2 Linear potential

Simply considering the correlation contribution of the found trails cannot be
a measure of success for the search, since we may find a subset with mostly
destructive/constructive interference and the interference varies over the key
space. Therefore we introduce the correlation potential:

Definition 21. Correlation potential [7, 7.1.5] is simply the square of the
correlation Cr(a, 3)2. When referring to the potential of a trail, this is the

square of the correlation contribution.

15



Informally when we refer to ‘better’ trails, these are trails with a larger
squared correlation contribution.

Lemma 22. Assuming independent round-keys. The expected correlation
potential (squared correlation) between input/output selection patterns (o, 3),
is the sum of the correlation potentials of all trails U; between « and 8 [7,

7.67]
E(C?) = Z Cr(U;)?

For key-alternating ciphers the expected correlation potential is key-
independent and gives a quantitative measurement for ‘how much’ of the
linear hull we take into account using the different methods examined later.

3.3 Wide trails

We now return to the discussion of approximations over bricklayer functions
from earlier. As noted earlier the approximations with a lower number of
non-trivial approximations over the non-linear component functions tends
to have a greater squared correlation. Therefore we intuitively expect the
dominant trails to be those ‘activating’ a small number of S-boxes (non-
linear components) of the cipher. In the later chapters we will often use
this observation as a heuristic when finding trails, since the Hamming (with
bundle size matching the domain of the S-box) of the input selection pattern
corresponds directly to the number of ‘active’ S-boxes:

Definition 23. Linear branch number [7, 9.3.2]. Let F : F} — F3" be a
Boolean function, the linear branch number By(F') of F' is the minimum sum
of Hamming weights of the input/output selection patterns for any non-trivial
(i.e. a« #0NA B #0), non-zero linear approximation:

By(F) = aﬁ’clil(iaflﬂ#o{wb(a) + wy(B)}

The linear branch number over the round function is often used to argue
about the maximum linear potential of any trail over the cipher, by giving
a lower bound for the number of active S-boxes. To increase the linear
branch number many cipher designers introduce linear transformations into

16
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Figure 1: One round of a generic balanced Feistel

the round function; even if we only activate a single S-box in the current
round a high branch number ensures that a large number of S-boxes are
activated in the subsequent round. This is commonly referred to as the
‘Wide trail strategy’ [7, p. 126]). PRESENT does not employ the wide trail
strategy, but opts for a bit-wise permutation (with no hardware cost) due
to the emphasize on maintaining a low GE (gate equivalence), which results
in PRESENT having a large number of trails with a low number of active
S-boxes and consequently relatively high linear potential. MIBS incorporates
a small matrix multiplication into the F-function to in an attempt to increase
the linear branch number.

3.4 Branching relations

Lastly we note useful relations when constructing linear trails over Feistel
networks. In particular these will be used in the analysis of MIBS (see 4.2).
3.4.1 Fork branch

We can describe the ”three-forked branch”, seen on the left in Figure 1, as
x — (z,x). Let @ be an input mask and (v, 5) corresponding output masks.
Then it is easily seen:

<[E,CE> = <ZL‘,’}/>—|—<$, (1)
(,0) = (z,0) + (x,7 (2)
(z,0) = (z, 0 +7) (3)

17



Usually £ will be the selection pattern propagated as the input mask to
the following round.
3.4.2 XOR branch

Consider the ”XOR branch”, as seen on the right of Figure 1. This is simply
addition in the field: z,y — = 4+ y. Let a be fixed a shared input mask, and
let 5 be an output mask. Then:

(+y,B) =(x,0) + (y, ) = (z + y,)

Hence § = «, are the only approximations with non-zero correlation.

4 Ciphers

In this project the ciphers under consideration are so-called light-weight ci-
phers. Such ciphers are designed for highly efficient? implementation in hard-
ware, while still offering an acceptable level of security. As a result these
constructions are typically considerably simpler than those aimed for typical
server/desktop applications.

4.1 PRESENT

4.1.1 Overview

PRESENT is a light-weight SPN, standardized by ISO in 2015 [9]. PRESENT
has a block size of 64-bit and a key size of 80/128-bits (smaller versions has
been defined to aid analysis [13]). The round function comprises of 3 stages:

1. Key addition; A 64-bit round key is xored into the state.
2. Substitution; 16 identical 4 x 4 S-boxes are applied to the state.

3. Permutation; A bit permutation, yielding full diffusion after 2 rounds®°.

The ordinary round function is repeated 31 times, followed by a final key
addition (to avoid reversing the last round trivially). See [1] and [9] for a

In terms of size (gate equivalents, proportional to die space) and power consumption.
0The input of any S-box can affect the input of any other after 2 rounds
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full description of PRESENT. One crucial observation is that all operations
in PRESENT are bitwise, this means that PRESENT has a linear branch
number of just 2.

The only non-linear operation is the S-box applications, the full linear
approximation table (LAT) over the PRESENT S-box can be found in ap-
pendix, showing the number of inputs for which the approximation holds
minus half the size of the domain'!. We (implicitly) use this table in the
methods explored in Section 5 when constructing approximations over the
substitution layer of PRESENT, following our observations in the discussion
of bricklayer functions (Section 2.5.4).

4.1.2 Prior work

Ohkuma [16] has argued that the best linear trails for PRESENT are ‘Single-
Bit Paths’, with only single bits active on either side of each S-Box. Since
such trails remain ‘narrow’, they activate at most the same number of S-boxes
in the following round and hence are good candidates for trails with large
squared correlation; following our discussion on brick layer functions. Such
linear trails are used in the work by Cho [6] claiming to break 26 rounds using
multidimensional linear cryptanalysis, with a data complexity of 2624, Work
by Abdelraheem [2] estimates the linear potential for all section patterns of
low Hamming weight using sparse correlation matrices (Definition 15). This
work has inspired methods for estimating the linear hull of PRESENT and
MIBS explored later in this report.

4.2 MIBS

4.2.1 Overview

MIBS is a simple balanced Feistel network with a block size of 2 x 32 bit.
The F-function has an SPN structure (in particular the F-function is a per-
mutation), comprised of the following layers:

1. Key addition: A 32-bit round key is xored into the input.

2. Substitution: 8 identical bijective 4 x 4 S-boxes are applied.

' The correlation can be calculated from the entries by dividing with the size of the
domain (yielding the ‘bias’) and multiplying by 2 to get the correlation.
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3. Permutation: A linear operation on nibbles, see the section below.

The F-function is somewhat similar to that of Camellia. Observe that
the construction allows MIBS to be expressed as a key-alternating cipher
with 33 key additions, by letting the rightmost 32-bits of any round key be
the leftmost 32-bit of the previous round key, see (Figure 6 in appendix).
The only non-linear element of the F-function is the S-box applications, the
linear approximation table over the S-box can be found in appendix. The
key schedule is heavily inspired by PRESENT adopting the same pattern of
rotation, S-box application and addition of a round constant, [10] describes
versions of MIBS with both a 64 and 80-bit key. We shall consider the 80-bit
variant only.

4.2.2 Linear transformation

The linear transformation of MIBS, henceforth denoted P, operates on 4-bit
words. The matrix operation is detailed and constructed in [12, 4.2], but no
rational is provided for the final permutation on nibbles [10]; which amounts

to nothing more than reordering the rows of the example from [12] used

by [10]. Let I be a 32-bit input to the linear layer: I = a1 ||za||xs||z4l|zs5]|76] 27|28
then the P can be described by the following matrix multiplication:

] L 101101 17 [2]
Ys 01 11111 0| |z
Us 1110110 1|
gl |01 1100 1 1| |y
ys| (101 1100 1] |as
s 1101110 0] |
yr 1110011 0| |ar
ys] (101 101 1 1] |ag

Where the entries are scalars in Fo. The linear branch number (Defini-
tion 23) of P is 5 (with a bundle size of 4) [4] [10]. Since the square matrix has
full rank, the transformation is a bijection'? and the inverse transformation
is:

12 Alternatively it is a permutation of the rows of a matrix defining a bijection [12]
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7 0101011 1]][w
o 1001101 1|y
T3 1011110 0]y
] |01 101 11 0] |y
zs|] 001 11101 1] |y
76 1101110 1|y
Ty 1010111 1| |y
] (1111011 0] |ys

4.2.3 Prior work

MIBS has received substantially less cryptanalysis than PRESENT. The au-
thors of MIBS has conducted some analysis of the cipher, to evaluate the
security, in an attempt to upper bound the bias of any linear trail. They
hypothesis the best 4-round approximation, with a correlation of 2=7, which
is used to conclude that any trail over 32 rounds will have a correlation
no greater than 27°% and that full MIBS should therefore remain secure
against linear cryptanalysis. The primary source of cryptanalysis of MIBS
has been the work by Asli Bay, Serge Vaudenay et al. [4] [3] claiming to attack
13 rounds of MIBS-80 using differential cryptanalysis [4] and 19 rounds of
MIBS-80 using multidimensional linear cryptanalysis with a data complex-
ity of 2578 [3]. However we have been unable to verify these results (the
claimed trails do no appear consistent over the permutation).

5 Estimating the linear hull of PRESENT

In this section we explore methods for estimating the hull of PRESENT and
estimate the correlation distribution for parities using one of these methods.
Throughout this chapter we evaluate the algorithms proposed by consid-
ering the linear hull of PRESENT over 22 rounds, between the following
input/output selection patterns (in hexadecimal):

(cr, B) = (0x8000000000000000, 0x8000000000000000)

Using the number of trails and estimated squared correlation as a mea-
surement for success. For some of these strategies (‘breadth first” and ‘neigh-
bouring trails’) the number of trails is relevant for complexity since key
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enumeration is done separately for each individual trail. For the iterative
estimation it is largely irrelevant.

All benchmarks are on a single core of an Intel i7-2600K @ 3.40 GHz.

5.1 Key-enumeration on PRESENT

In this section we aim to give a rough idea about the cost of key-enumeration
for PRESENT, using the method following from Lemma 20. In the optimal
case where both key and trail fit in D1 cache (verified using ‘cachegrind’),
the average number of trails per second for a single key is 107 trails/s. This is
the relevant measurement, since in practice we instantiate the search with a
number of keys, then add the trails found during the search to the correlation
estimation for each such key. During our analysis we seek to enumerate 100
000 keys per trail, in practice the cost of key-enumeration will usually dom-
inate the running time of the estimation, observe also that key-enumeration
is an embarrassingly parallel problem.

5.2 Terminology

In the following section we will use the notion of forward/backward trails:

— Backward trails.
A backward trail is a trail (Defintion 17) constructed over some number
of rounds of the decryption operation.

— Forward trails.
A forward trail is a trail, over some number of rounds of the encryption.

This will allow us to search to the ‘middle’ of the iterated cipher and con-
struct trails over the entire cipher by concatenating forward and backwards
trails.

5.3 Breadth first trail search

The primary observation is that the linear potential of a trail only decreases
as more rounds are added. Hence it seems a reasonable assumption that the
best n + 1 round trails, have the best n round trails as a prefix.
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However it is possible that the greedy choices made when pruning the pool
does not yield the most optimal trails over all rounds; since such choices as-
sume that good trails remain decent in every round. The problem of pruning
a globally optimal trail based on low absolute correlation contribution at
a particular round becomes more prevalent when the ratio of the pool size
to the total number of trails becomes ‘too’ small. In particular we cannot
expect to find the best trail in the hull by letting the pool size be 1.

5.3.1 Algorithm

The search maintains a pool of trails, adding a round to each trail in each
round and pruning based on linear potential. The algorithm consists of two
searches:

1. The first [“5* | rounds of the PRESENT in the forward direction.

2. The last [25%] rounds of PRESENT, searching backwards.

After collecting each set of ‘partial trails’, we insert these into buckets
according to which S-boxes they activate in the meeting round (remember-
ing to apply the permutations). Leaving us with a set of buckets for each
direction. We then match the buckets pairwise and enumerate all pairs of
partials trails (one from each bucket); such that the forward and backward
trail activate the same S-boxes. For each such pair we check if the forced
approximation over the substitution layer has non-zero correlation.

5.3.2 Evaluation

The results for the strategy using been different pool size parameters can be
seen in Table 1. The running time is solely for the trail search (not including
key enumeration). Notice that we get comparable results when the size of
the pool is increased in the number of rounds, but the running time is lower.

5.4 Exploring neighbouring trails

Following Ohkumas observation [16] that Single-bit trails trails dominate
the linear hull of PRESENT it seems a viable strategy to try and explore
trails that have a low Hamming distance from Hamming weight 1 trails;
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Rounds | Pool size Trails | F(C?) | Time
22 1000000 523077464 | 27629922 1 89 795
22 2000000 | 1421369806 | 27629392 | 171.17s
22 3000000 | 2737607739 | 27029353 | 274.60s
22 4000000 | 4328261485 | 27029304 | 396.60s
22 1000 - 2" 216090757 | 27529904 1 17 30s
22 2000 - 27 921 763481 | 27529152 1 50.08s
22 3000 - 2" | 1687145980 | 27629377 | 85.09s
22 4000 - 2" | 2561741402 | 2702931 | 126.16s
22 8000 - 2" | 7978414360 | 27029145 | 379.91s

Table 1: Evaluation of breadth-first search

which activate exactly 1 S-box in every round. We call these new trails
‘neighbouring trails’.

Since all trails with selection patterns having Hamming weight 1 can be
exhaustively enumerated for 22 rounds, we can find such neighbouring trails
by replacing a section of the trail with one of higher Hamming weight, thus
obtaining trails that are ‘close’ to the original. We call the number of rounds
replaced from the original trail, the ‘leap’ of the search.

5.4.1 Algorithm

Care must be taken to avoid ‘duplicate trails’, considering the same trail
twice. A description of the simplified algorithm follows.

1. F' + All forward Hamming weight 1 trails in the hull.
2. B + All backward Hamming weight 1 trails in the hull.
3. Set S« 0

4. For each U € F:

(a) Forall 0 <n <rp, — L

i. Replace the section [n : n + 1] of the trail U using sub-search,
yielding a new set of partial trails @)

ii. S+ SuUQ
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5. Match S with B obtaining trails from the hull
6. Set S« 0
7. For each U € B:

(a) Forall 0 <n <y, — [

i. Replace the section [n : n+ (] of the trail U using sub-search,
yielding a new set of partial trails )

ii. S+ SuUQ
8. Match F' with S\ B obtaining trails from the hull

The number of found trails can be adjusted by pruning the sub-search
or adjusting the number of rounds substituted (the ‘leap’). Observe that
‘leaping’ less than 4 rounds (2 times full diffusion in PRESENT) will yield
few additional results. This strategy is made efficient by two observations:

1. The search for neighbouring trails, can be done before matching the
partial forward /backward trails.

2. The results of the high Hamming weight sub-search can be cached and
reused at all round offsets.

5.4.2 Evaluation

The ‘Leap’ column shows how many rounds of the Hamming weight 1 trails
we replace. The Hamming weight (‘HW’) is the maximum Hamming weight
of any selection pattern of resulting trails.

Observe that adding the trails with Hamming weight 4 sections, does
not yield a significant improvement over Hamming weight 3, because the
magnitude of correlation contribution of such trails is significantly smaller.
The greatest squared correlation contribution for any such trail is 2711°. For
6 rounds the number of Hamming weight 4 trails becomes so large, that
the neighboring trails herein begins to have a small effect on the estimated
potential, however the running time of the key-enumeration phase makes this
number of trails impractical (requiring at least ~ 2027803 CPU hours on key
enumeration alone).

Although significantly slower than the breadth first search, observe that
the squared correlations in Table 2 are better than those of Table 1, while the
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Rounds | HW Leap Trails | E(C?) Time
22 2 | 4 Rounds 545180856 | 2762914 488.70s
22 2 | 5 Rounds 706 485734 | 27629104 635.17s
22 2 | 6 Rounds | 1007846304 | 2762909 909.34s
22 3 | 4 Rounds 069391374 | 27629129 873.08s
22 3 | 5 Rounds | 3103530089 | 27629978 | 2780.90s
22 3 | 6 Rounds | 9700781818 | 27629967 | 8719.26s
22 4 | 4 Rounds | 1112503702 | 27629129 | 1005.365
22 4 | 5Rounds | 9844531610 | 272997 | 8893.94s
22 4 | 6 Rounds | 73009116065 | 2762999 | 66282.76s

Table 2: Evaluation of neighboring trail strategy

number of trails is comparable: a crucial advantage of this method is that
it finds trails with a significantly higher linear potential (more ‘dominant’
trails) than the breadth first search, this is important since the running time
of the key-enumeration phase is linear in the number of trails, hence the
running time including key-enumeration is lower.

The reason why the method surpasses a simple breadth first search is that
the breath first method depends on local choices leading to optimal trails.
Where as this method considers a dominant trail and replaces some section
hereof with what would otherwise be a terrible local choice (e.g activating 3
S-boxes in a round), yet the remainder of the trail is low Hamming weight
and so the total number of active S-boxes remain small.

5.4.3 Comparison of trails

Here we note that the trails found by the two strategies discussed in the
last sections are often quite different and observe artifacts in the trail due
to the search method employed; in particular the set of trails for one of the
strategies is not just a superset of the other.

The trails in Table 3 are typical trails from the respective strategies, both
have an estimated squared correlation of 271°2, despite the trail in from the
breadth first strategy activating 30 S-boxes and the neighbouring trail 26
S-boxes. The ‘breadth first trail’ is not covered by the neighboring strategy,
since we only replace a single section of the original trail, while this trail has
many selection patterns over a wide range of rounds with a higher Hamming
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Round | Breadth first trail (input masks) Neighbouring trail (input masks)
1 BHooooooo000000000 | Jo00000000000000
2 0000000 0ffoo000000 | 00000000 0000000
3 0000000000 ooooo | 0000000000 oo0000
4 oo fJooooooo0o000000 | 000000000 0PB00000
5 ooooo0o0o0o0Jooooooo | o0o0o0o0o00Foooo000000
6 000000000 000000 | ocPoooBPoooBPooooo0o0
7 oo looooooo0o000000 | 0000000000000
8 BloocoooooooooBJooo | 0000000000000 00O
9 BooBoocoooooooo000 | 000000fJo0o0000000
10 |PHooofloooooooo0o000|000000000PBo000000
11 00000000000 0FEJoo | 000000000 0fo0000
12 oo ofoocofoo000000 | 000000B0o00000000
13 0 0000000000000 | 00000Bo0000000000
14 0cooOofoooocoo0oopEooo | ofo0000000000000
15 o oBoooo0o0o0000000 | 00000000fJoo00000
16 ooooo0o0o00fooooooo | o0o0o0000fo000000000
17 0000000000 oo0o000 | 000000000 o000000
18 0000000000Booooo | 0000000000 o0000
19 oo Jlooooo000000000 | 00 JO000000000000
20 00000000 ooooooo |[PJo00000000000000
21 oofJoooooooo000000 | JOo00000000000000O
22 |PHooo0000000000000 | Jo0o00000000000000

Table 3: Comparison of trails for PRESENT

weight (rounds 8-15). The ‘neighbouring trail’ trail is not discovered during
the breadth-first search, since the breadth first search makes greedy local
choices and a trail activating 6 S-boxes over 2 rounds (rounds 6-7) will get
pruned from the pool.

5.5 Iterative estimation of the hull

Rather than explicitly finding individual trails in the hull and enumerating
keys over these afterwards, we consider the cipher instantiated with a fixed
key and estimate the correlation between («, 3) for this fixed key. This allows
us to consider a entirely new approach for estimating the correlation over
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the key space: rather than enumerating trails, we inductively estimate the
hull between o and a number of intermediate masks. This has the effect of
‘collapsing the trails’, allowing us to consider the influence of an exponential
(in the round count) number trails. These intermediate selection patterns lie
in a predefined ‘mask-set’:

Definition 24. Mask-set. A mask-set S, is a set of selection patterns from
F% for some fixed n > 1. Usually we shall consider the hull defined by trails
with selection patterns (or ‘masks’) from S.

We start by defining the mask-set to estimate the linear hull over. For
the search over PRESENT we let S be all selection patterns with Hamming
weight less than some constant ¢ and consider the hull of all trails in {a} x
S... xS x {5}, where 5 € §. Correctness of the algorithm below follows
from the observation that we can ‘inductively’ expand an estimation of the
hull for n rounds to an estimation over n + 1 rounds:

Lemma 25. Let Cr(a, 1), Cr(a, Ba), ..., Cr(a, Bi) be the correlations be-
tween o and all output masks 1, ..., Bk for the Boolean function F' : F} —
F5'. Let G : 5 — F§ be any Boolean function, then for any B € F9:

Caor(a, 3) = ZCF(Oé,@') -Ca(Bi, B)
Bi

This follows directly from Definition 18 and Lemma 19. We can obtain
an estimate for the correlation, by restricting the selection patterns those of
the mask-set.

By letting F' be the prior n rounds of the cipher and G the keyed round
function we can therefore estimate the correlation between a and all out-
put masks in § (in particular 5 € S) after n + 1 rounds (proceeding by
induction to the full number of rounds). Recall that the correlation matrix
(Definition 15) for the composition of two functions is the matrix product of
their corresponding correlation matrices (Lemma 16). Hence by constructing
the correlation matrices for the keyed round functions (and an initial matrix
with the single non-zero entry M, ) = £1), with entries equal to zero for
all selection patterns not in the mask-set, we could estimate the correlations
with multiple output parities as the matrix product of these. Therefore this
work bares some resemblance with that of Abdelraheem [2], discussed earlier,
although we avoid the explicitly expressing the matrices.
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5.5.1 Algorithm

With these observations in mind we can estimate the linear hull, by cal-
culating the key dependent correlation for a number of keys and all low
Hamming weight trails iteratively. Let P be the permutation in PRESENT,
(Qinit; Brinar) the approximation for which we want to estimate the hull and
Ko||.. .|| K, be the expanded keys for r rounds. Then the algorithm can be
described as:

1. Enumerate linear approximations over the S-box
2. Set pooleyrrent < O (an empty map)

3. Set pool,e, < 0 (an empty map)

4. If (init, Ko) = 0, then poolyrrent[@init] = 1

5. If (@init, Ko) = 1, then poolyrrent|init] = —1

6. For each round:

(a) Calculate the correlations over the keyed S-boxes.
(b) For each o € pool yrrent:

i. Let C' = poolcyrrent[]

ii. Estimate the substitution layer using the keyed S-boxes. Yield-
ing an approximation over the layer («, ) with correlation ¢

ili. If wy(B) > hw (B ¢ S), then continue to next «

iv. Let ' = P(pB)

v. If 5" & poolyeyw, then pool,e,[5'] < C - ¢

vi. Else if 5" € poolyew, then pool,e, ('] < poolyew[B'] + C - ¢
(¢) pooleurrent <= PoOlyew

(d) poolew < O

7. Return pOOZCurrent [6final]

As noted earlier the algorithm computes the correlation between a;,;; and
all possible output selection masks 8 € §. This further reduces complexity if
we wish to estimate the hull for multiple linear approximations with a shared
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input selection mask «. For a given Hamming weight hw, round count r and
block size n, the algorithm has a memory complexity of:

O(search(hw)) = i C’)

=1

And time complexity:

O(search(hw,r)) =7 - i (;)

i=1

5.5.2 Evaluation

The expected squared correlation can be estimated by replacing the corre-
lations over the S-Box with their squared and applying the method for the
expanded key equal to zero:

Lemma 26. Let ¢;,, ¢y, ..., ¢, be all the correlations (with duplicates) of the
linear approximations over the S-boxes enforced by the trail U;. For a key-
alternating cipher, under assumption of independent round keys, the squared
correlation can be estimated by squaring the correlations of the relevant S-box
approximations. Since:

E(CQ) = ZCF(UZ)Q = Z(C’il ' Ci2 Tt Cik)Q = chl ' C?Q Teeet C?k
Ui Ui

U;

We can count the number of trails in a similar manner, by replacing the
correlation with a counter, which we add to the new pattern whenever a
non-zero approximation is found over the round function.

As Table 4 clearly shows, this method considers the influence of a signif-
icantly larger portion of the hull (number of trails) than those constructing
individual trails could ever do. From Table 4 we can also see that the trails
in the Hamming weight 1 mask-set (which activate exactly 1 S-box in each
round) dominate the hull of PRESENT.
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Rounds | HW | Trails E(C?) Time
29 1 ~ 107.5200 2763.019 0.00s
29 2 ~ 1014.3235 2—62.8617 0.07s
29 3 ~ 1021.7632 2—62.8564 2.40s
22 4 ~ 1(0%9:6627 | 9—62.8545 111.14s
22 5|~ L0577 | o @S 540775

Table 4: Evaluation of iterative hull estimation

5.5.3 Correlation distribution over the key space

The distribution of the correlation between input and output selection pat-
tern has been estimated over the key space by sampling 100000 cipher keys
at random, applying the key schedule and using the method described above
to estimate the linear hull for a fixed expanded key. The result for S = {a €
F$* : w;(a) < 4}, over 22 rounds of full PRESENT can be seen in Figure 2.
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Figure 2: Estimated density of the correlation over the key space

5.5.4 Heuristic for finding approximations

Since the algorithm computes not just the correlation between a and f,
but between o and any possible output mask in the mask-set, using the
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observation from Lemma 26 we can use the algorithm as a heuristic for
choosing linear approximations over PRESENT: by enumerating candidate
input selection patterns and extracting the best output masks, based on
estimated squared correlation. For the input parity 0x8000000000000000,
the output parity with the greatest linear potential is 0x8000000080008000
when considering the hull of all trails with selection patterns having at most
Hamming weight 5. When only considering Hamming weight 1 trails, the
approximation considered in this section has the greatest linear potential.

6 Estimating the linear hull of MIBS

6.1 Mask-set search

Like the iterative hull estimation applied to PRESENT, we explicitly define
a mask-set to consider. We start by finding the set Q of inputs to P!
activating at most 4 S-boxes over the F-function:

Q = {wy(P7H(I)) < 4}

For MIBS we consider the mask-set consisting of selection patterns which
activate at most 4 S-boxes each round. This restricts all the selection patterns
of any trail to the set:

S={L||R: Re Q}

Observe that due to the Feistel construction, the left part of the interme-
diate selection patterns becomes restricted exactly like the right. However the
number of intermediate masks still remain impractical, since |Q| = 3739171
and hence the maximum number of intermediate selection patterns becomes
~ 10'3; which is beyond our available memory. Therefore we must prune the
estimation process, discussed later.

Suppose L||R is an input selection pattern to the current round. Let
R’ be the output selection pattern over S~! for the input selection pattern
P7Y(R). Then we can prune to the mask-set while choosing approximations
over the S-Box, since:

R|(L+R)eS < L+R €Q
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We use this observation by computing Q and inserting the elements into
a trie with 4-bit words. As we choose approximations over S~ we xor the
output mask of the S-box approximation with the corresponding nibble from
the left 32-bits of the state and walk the trie. If no node was found, we
backtrack and choose another approximation over this S-Box. In our search
we considers trails with input selection pattern:

I ={L||0* : L€ Q}

This has the effect of ‘skipping’ the first round, since the linear approx-
imation over the substitution layer of the F-function becomes trivial. Note
however that this is not necessarily optimal, since the right state may cancel
with nibbles from the left in the following round. The trail described in [10]
is not of this form.

6.1.1 Algorithm
Pre-computation phase:
1. Set @+ 0
2. For each input I € F3*:

(a) Compute w = wy(P~1(I))
(b) If w <4, then Q <~ QU {I}

3. Save Q
Naive implementation of correlation estimation:
1. Let S={L||R: R € Q}
2. Set pooleyrrent < O (an empty map)
3. Set pool,e, < 0 (an empty map)
4. Set pooleyrrenta] =1
5. For each round:

(a) For each mask o € pool.yrrent:
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i. Split into L||R = «
ii. Compute R’ = P7Y(R)
iii. For each approximation over the inverted substitution layer

of the F-function with R’ as input selection pattern, yielding
R as output selection pattern with a correlation C":

Let 8= R||[(L® R")

Let ¢ = C' + pool cyrrent | Y]

If B ¢ S, continue with next such approximation.
If B € poolyew then poolye,|f] < pool,ew|B] + C
E. If 8 ¢ poolye, then pool,e,[5] < C

(b) Set pOOlcurrent < pOOlnew

oS awe»

(c) Set pooley < O

In the actual implementation membership of § is checked simultaneously
with the approximation of the substitution layer (as described above). Due
to memory constraints we have to limit the pool size to ~ 100000, by only
keeping the masks with the highest squared correlation after each round;
which is calculated separately from the correlation to ensure the hull under
consideration remains the same for all keys. We obtain a ‘hybrid’ of the
breadth-first search and the iterative estimation.

Over 10 rounds, I have estimated the linear potential of all input masks
in « € I' and any output selection pattern f € S. The best of which is
shown in the appendix (Table 7). For key enumeration we can consider the
hull over MIBS for 12 rounds, with the following two approximations:

(ar, B) = (0x8888800800000000, 0x80888080d000d000)

With an estimated squared correlation of 2761-98772

(o, B) = (0x2222200200000000, 0x2022202060006000)

With an estimated squared correlation of 276198785

6.1.2 Evaluation

If we plot a histogram over the correlations estimated over 100 000 keys
(like done PRESENT earlier), we observe that the linear hull of MIBS looks
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Figure 3: Distribution of the correlation over 12 rounds of MIBS

significantly different (See Figure 3), namely that the correlation does not
approximate a normal distribution.

The peaks in the distribution (Figure 3) indicates that the hull contains a
few very dominant trails; since destructive interference seems to be minimal
(which would otherwise ‘smooth out’ the peaks observed). A distinguisher
can therefore be constructed by checking if the sampled correlation lies close
to these 6 distinct peaks. Furthermore the average squared correlation is
276198771 which is very closed to the estimated squared correlation given
above. When we repeat the enumeration over 14 rounds we obtain the results
seen in Figure 4, we again get a distribution which is close to normal. The
significantly different distributions indicate the possibility of constructing a
successful distinguisher between 12 and 14 rounds of MIBS, which could lead
to key recovery (as discussed earlier) over 13 rounds of MIBS. Note that even
though the normal distribution for 14 rounds has variance less than 274, we
still expect the wrong key distribution of the correlation to be A/(0,27%4) [5];
at worst we will underestimate the power of our distinguisher.

6.2 Using multiple approximations

Lastly I briefly mention the possibility of using multiple approximations
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Figure 4: Distribution of the correlation over 14 rounds of MIBS

when constructing linear distinguishers (‘multidimensional linear cryptanal-
ysis’). If we plot the correlation distributions for both MIBS approximations
using a heatmap we obtain a diagram like the one found in Figure 5. We
expect the distribution for an ideal cipher to be a bivariate normal distribu-
tion with mean 0 and identity covariance matrix; which is clearly not what
we observe in Figure 5. Hence a distinguisher could implement binary hy-
pothesis testing by ‘drawing boundaries’ around the 4 clusters. Using more
approximations over the cipher may decrease the false positive rate of the
distinguisher leading to lower computational complexity or the ability to
distinguish over additional rounds.

7 Conclusions

We began with a discussion about the high level concept of distinguishers
between block ciphers and saw that linear approximations can be used to con-
struct distinguishers by considering the distributions of the correlation over
the key space. Using key enumeration, we have exhibited different methods
for estimating the distribution using the dominant linear trails in the hull be-
tween the parities. We have explored ‘traditional’ trail searching strategies,
where search is followed by key enumeration and the ‘iterated’ estimation
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where we estimate the hull for a concrete instantiation of the cipher (applied
to MIBS and PRESENT). We saw that the iterative/inductive method sig-
nificantly outperformed the ones considering individual trail for PRESENT.

We have estimated the distribution of the correlation for approximations
over both PRESENT and MIBS, observing correlation distributions over
22 rounds of PRESENT and 12 rounds of MIBS which deviates from ones
expected over an ideal cipher.
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Table 5: Linear approximation table for the MIBS S-box
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Figure 5: Heatmap of correlations for both MIBS approximations (12 rounds)
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Table 6: Linear approximation table for the PRESENT S-box
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Figure 7:  Estimated distribution of correlation for approximation
(0x2222200200000000, 0x2022202060006000) over 12 rounds of MIBS
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Input selection pattern | Best E(C?)
0x8888800800000000 Q—51.987767
0x2222200200000000 9—51.988001
0xccccec00c00000000 9—51.988170
0x282220a800000000 951993612
0x828880a200000000 251993663
0xbcbbb07c00000000 | 2771994307
0xcbccc07b00000000 2—51.994319
0x88828a0200000000 9—51.994363
0x82828aa800000000 9—51.994363
0x22822a0200000000 9—51.994366
0x822882aa200000000 2—51.994366
0xbbcbb70b00000000 | 2771994366
0xcbbcc77b00000000 | 2~ 51-994366
0x88288a0800000000 9—51.994368
0x28822aa800000000 9—51.994368
0xcccbec70b00000000 9—51.994368
0xcbcbc77c00000000 9—51.994368
0xbbbcb70c00000000 9—51.994368
0xbcbcb77b00000000 | 2~ 51-994368
0x2228220800000000 | 2~ 51-994368
0x28282a2a200000000 9—51.994368
0xccbecc70c00000000 9—51.994368
0xbccbb77c00000000 9—51.994368
0x8822800200000000 251994368
0x2288200800000000 | 2~ 51-994368
0x822280a800000000 2—01.994368
0x288820a200000000 9—51.994368
0xccbbc00b00000000 9—51.994368
0xbbccb00c00000000 9—51.994368
0xcbbbc07c00000000 | 251994368
0xbcccb07b00000000 9—51.994368

Table 7: Candidate input selection masks for MIBS
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